Samarium Cobalt Magnet, also known as SmCo magnet, is an alloy magnetic material composed of samarium, cobalt and other rare earth metals.
SmCo magnet has high magnetic energy product and very low temperature coefficient of Remanent Induction (how Br varies with temperature).
This magnet has reliable performance in a very wide range of temperature from -200 to 350 Celsius (-328 to 662 Fahrenheit). SmCo magnet perform better than NdFeB magnets due to its extremely low magnetic loss in operating environments over 180 Celsius, and it also has better cost-effectiveness than higher grade NdFeB magnets (UH, EH) that has approximate high temperature output.
Because of its strong corrosion and oxidation resistance, SmCo magnet is widely used in aerospace, national defense, microwave devices, communications, medical equipment, instruments, meters, various magnetic transmission devices, sensors, magnetic processors, motors, magnetic cranes and other fields.
EPI Magnets supply many kinds of dimensions/grades/coatings/ magnetization directions for Samarium Cobalt Magnets.
There are two types of the alloy composition of SmCo magnets, SmCo5 and Sm2Co17.
SmCo5 Magnets
The maximum magnetic energy range of different grades is between 16 and 25.
The maximum working temperature is 250℃ (482℉).
Sm2Co17 Magnets
The maximum magnetic energy range of different grades is between 20 and 35.
Comparatively, SmCo5 has lower maximum magnetic energy product and lower max working temperature than Sm2Co17. While the mechanical properties and ductility of SmCo5 are slightly better than Sm2Co17, and it is easier to be machined.
The customers who purchase non-magnetic SmCo magnets and magnetize themselves may need to know that SmCo5 magnet can be fully magnetized in 40,000 gauss magnetic field, while Sm2Co17 magnets need 60,000 gauss or higher magnet field. Customers can choose SmCo5 or Sm2Co17 magnets according to their own magnetizer.
Parameters | Unit | SmCo5 | Sm2Co17 |
---|---|---|---|
Density | g/cm3 | 8.3 | 8.4 |
Curie temperature/Tc | K | 1000 | 1100 |
Vickers Hardness/Hv | Mpa | 450-500 | 550-600 |
Compression Strength | Mpa | 1000 | 800 |
Bending Strength | Mpa | 150-180 | 130-150 |
Tensile Strength | Mpa | 40 | 35 |
Resistivity/p | Ω.cm | (5~6)x 10-5 | (8~9)x 10-5 |
Coefficient of thermal expansion/a | (10-6/℃) | C⊥: 12 C ||: 6 | C⊥: 11 C ||: 6 |
Materials | Maximum Energy Product /(BH)max | Innate coercivity/Hcj | Maximum Working Temperature/℃ | Resistance to Corrosion |
---|---|---|---|---|
SmCo5 | 16-25 | 15-25 | 200-250 | good |
Sm2Co17 | 22-35 | 6-30 | 300-350 | good |
NdFeB | 26-52 | 12-30 | 80-200 | bad |
Ferrite | 3-4.5 | 3-4.5 | 200-300 | good |
AlNiCo | 5-10 | 1-1.8 | 450-500 | good |
Material | Grade | Residual induction/Br | Coercivity/Hcb | Intrinsic Coercivity/Hcj | Maximum Rnergy Product/(BH)max | Curie point/Tc | Maximum Working Temperature/Tw | Rev. Temp. Coef. of Induction (Br)/ α(Br) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | KGs | KA/m | Koe | KA/m | Koe | KJ/m3 | MGOe | ℃ | ℃ | %/°C | ||
SmCo5 | YX-16s | 0.79-0.84 | 7.9-8.4 | 620-660 | 7.8-8.3 | ≥1830 | ≥23 | 118-135 | 15-17 | 750 | 250 | -0.035 |
YX-18s | 0.84-0.89 | 8.4-8.9 | 660-700 | 8.3-8.8 | ≥1830 | ≥23 | 135-151 | 17-19 | 750 | 250 | -0.040 | |
YX-20s | 0.89-0.93 | 8.9-9.3 | 684-732 | 8.6-9.2 | ≥1830 | ≥23 | 150-167 | 19-21 | 750 | 250 | -0.045 | |
YX-22s | 0.92-0.96 | 9.2-9.6 | 710-756 | 8.9-9.5 | ≥1830 | ≥23 | 167-183 | 21-23 | 750 | 250 | -0.045 | |
YX-24s | 0.96-1.00 | 9.6-10.0 | 740-788 | 9.3-9.9 | ≥1830 | ≥23 | 183-199 | 23-25 | 750 | 250 | -0.045 | |
Low Temp. Coef. Of Br Material (SmGd)Co5 | LTC(YX-10) | 0.62-0.66 | 6.2-6.6 | 485-517 | 6.1-6.5 | ≥1830 | ≥23 | 75-88 | 9.5-11 | 750 | 300 | +0.0156 (20-100 ℃) |
+0.0087 (100-200 ℃) | ||||||||||||
+0.0007 (200-300 ℃) |
The temperature coefficients of remanent magnetization (Br) and intrinsic coercivity (Hcj) are measured between 20°C and 150°C, and are provided for reference only.
Theoretical calculation formulas (where T1=room temperature (usually 20°C), T2=high temperature):
Br@T2 = Br@T1 – [(T2-T1) * a(Br) * Br@T1]
Hcj@T2 = Hcj@T1 – [(T2-T1) * B(Hcj) * Hcj@T1]
Taking YX-20s with Br=0.9T, Hcj=1830KA/m as an example, the theoretical values calculated at 150°C high temperature are as follows:
Br@150C = 0.9 – [(150-20) * 0.045% * 0.9] = 0.8473T
Hcj@150C = 1830 – [(150-20) * 0.28% * 1830] = 1163.88KA/m
Notes:
Material | Grade | Residual induction/Br | Coercivity/Hcb | Intrinsic Coercivity/Hcj | Maximum Rnergy Product/(BH)max | Curie point/Tc | Maximum Working Temperature/Tw | Rev. Temp. Coef. of Induction (Br)/ α(Br) | Rev. Temp. Coef. of Intrinsic Coercivity (Hci)/ β(Hcj) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | KGs | KA/m | Koe | KA/m | Koe | KJ/m3 | MGOe | ℃ | ℃ | %/°C | %/°C | ||
Sm2(CoFeCuZr)17 | YXG-24H | 0.95-1.02 | 9.5-10.2 | 692-764 | 8.7-9.6 | ≥1990 | ≥25 | 175-191 | 22-24 | 800 | 350 | -0.035 | -0.20 |
YXG-26H | 1.02-1.05 | 10.2-10.5 | 748-796 | 9.4-10.0 | ≥1990 | ≥25 | 191-207 | 24-26 | 800 | 350 | -0.035 | -0.20 | |
YXG-28H | 1.03-1.08 | 10.3-10.8 | 756-812 | 9.5-10.2 | ≥1990 | ≥25 | 207-223 | 26-28 | 800 | 350 | -0.035 | -0.20 | |
YXG-30H | 1.08-1.10 | 10.8-11.0 | 788-835 | 9.9-10.2 | ≥1990 | ≥25 | 223-239 | 28-30 | 800 | 350 | -0.035 | -0.20 | |
YXG-32H | 1.10-1.13 | 11.0-11.3 | 812-860 | 10.2-10.8 | ≥1990 | ≥25 | 231-255 | 29-32 | 800 | 350 | -0.035 | -0.20 | |
YXG-33H | 1.12-1.16 | 11.2-11.6 | 845-890 | 10.6-11.2 | ≥1990 | ≥25 | 239-263 | 30-33 | 800 | 350 | -0.035 | -0.20 | |
YXG-22 | 0.93-0.97 | 9.3-9.7 | 676-740 | 8.5-9.3 | ≥1433 | ≥18 | 160-183 | 20-23 | 800 | 300 | -0.035 | -0.20 | |
YXG-24 | 0.95-1.02 | 9.5-10.2 | 692-764 | 8.7-9.6 | ≥1433 | ≥18 | 175-191 | 22-24 | 800 | 300 | -0.035 | -0.20 | |
YXG-26 | 1.02-1.05 | 10.2-10.5 | 748-796 | 9.4-10.0 | ≥1433 | ≥18 | 191-207 | 24-26 | 800 | 300 | -0.035 | -0.20 | |
YXG-28 | 1.03-1.08 | 10.3-10.8 | 756-812 | 9.5-10.2 | ≥1433 | ≥18 | 207-223 | 26-28 | 800 | 300 | -0.035 | -0.20 | |
YXG-30 | 1.08-1.10 | 10.8-11.0 | 788-835 | 9.9-10.5 | ≥1433 | ≥18 | 223-239 | 28-30 | 800 | 300 | -0.035 | -0.20 | |
YXG-32 | 1.10-1.13 | 11.0-11.3 | 812-860 | 10.2-10.8 | ≥1433 | ≥18 | 231-255 | 29-32 | 800 | 300 | -0.035 | -0.20 | |
YXG-33 | 1.12-1.16 | 11.2-11.6 | 845-890 | 10.6-11.2 | ≥1433 | ≥18 | 239-263 | 30-33 | 800 | 300 | -0.035 | -0.20 | |
YXG-35 | 1.16-1.2 | 11.6-11.2 | 868-908 | 10.9-11.4 | ≥1433 | ≥18 | 255-278 | 32-35 | 800 | 300 | -0.035 | -0.25 | |
YXG-26M | 1.02-1.05 | 10.2-10.5 | 676-780 | 8.5-9.8 | 955-1433 | 12-18 | 191-207 | 24-26 | 800 | 300 | -0.035 | -0.20 | |
YXG-28M | 1.03-1.08 | 10.3-10.8 | 676-796 | 8.5-10.0 | 955-1433 | 12-18 | 207-220 | 26-28 | 800 | 300 | -0.035 | -0.20 | |
YXG-30M | 1.08-1.10 | 10.8-11.0 | 676-835 | 8.5-10.5 | 955-1433 | 12-18 | 220-240 | 28-30 | 800 | 300 | -0.035 | -0.20 | |
YXG-32M | 1.10-1.13 | 11.0-11.3 | 676-852 | 8.5-10.7 | 955-1433 | 12-18 | 230-255 | 29-32 | 800 | 300 | -0.035 | -0.20 | |
YXG-24L | 0.95-1.02 | 9.5-10.2 | 541-716 | 6.8-9.0 | 636-955 | 8-12 | 175-191 | 22-24 | 800 | 250 | -0.035 | -0.20 | |
YXG-26L | 1.02-1.05 | 10.2-10.5 | 541-748 | 6.8-9.4 | 636-955 | 8-12 | 191-207 | 24-26 | 800 | 250 | -0.035 | -0.20 | |
YXG-28L | 1.03-1.08 | 10.3-10.8 | 541-764 | 6.8-9.6 | 636-955 | 8-12 | 207-220 | 26-28 | 800 | 250 | -0.035 | -0.20 | |
YXG-30L | 1.08-1.10 | 10.8-11.0 | 541-796 | 6.8-10.0 | 636-955 | 8-12 | 220-240 | 28-30 | 800 | 250 | -0.035 | -0.20 | |
YXG-32L | 1.10-1.13 | 11.0-11.3 | 541-812 | 6.8-10.2 | 636-955 | 8-12 | 230-255 | 29-32 | 800 | 250 | -0.035 | -0.20 | |
Low Temp. Coef. Of Br Material (SmEr)2(CoTm)17 | LTC(YXG-18) | 0.84-0.89 | 8.4-8.9 | 629-668 | 7.9-8.4 | ≥1433 | ≥18 | 135-151 | 17-19 | 840 | 300 | -0.001 | -0.25 |
LTC(YXG-20) | 0.89-0.94 | 8.9-9.4 | 660-708 | 8.3-8.9 | ≥1433 | ≥18 | 151-167 | 19-21 | 840 | 300 | -0.007 | -0.25 | |
LTC(YXG-22) | 0.94-0.98 | 9.4-9.8 | 692-740 | 8.7-9.3 | ≥1433 | ≥18 | 167-183 | 21-23 | 840 | 300 | -0.01 | -0.25 | |
High Temp. Resistance Material Sm2(CoFeCuZr)17 | HT400(YXG-24) | 0.99-1.04 | 9.9-10.4 | 740-788 | 9.3-9.9 | ≥1830 | ≥23 | 183-199 | 23-25 | 850 | 400 | -0.035 | -0.10 |
HT450(YXG-22) | 0.94-0.99 | 9.4-9.9 | 700-748 | 8.8-9.4 | ≥1830 | ≥23 | 167-183 | 21-23 | 850 | 450 | -0.035 | -0.10 | |
HT500(YXG-20) | 0.89-0.94 | 8.9-9.4 | 660-708 | 8.3-8.9 | ≥1830 | ≥23 | 151-167 | 19-21 | 850 | 500 | -0.035 | -0.10 |
The temperature coefficients of remanent magnetization (Br) and intrinsic coercivity (Hcj) are measured between 20°C and 150°C, and are provided for reference only.
Theoretical calculation formulas (where T1=room temperature (usually 20°C), T2=high temperature):
Br@T2 = Br@T1 – [(T2-T1) * a(Br) * Br@T1]
Hcj@T2 = Hcj@T1 – [(T2-T1) * B(Hcj) * Hcj@T1]
Taking YX-20s with Br=0.9T, Hcj=1830KA/m as an example, the theoretical values calculated at 150°C high temperature are as follows:
Br@150C = 0.9 – [(150-20) * 0.045% * 0.9] = 0.8473T
Hcj@150C = 1830 – [(150-20) * 0.28% * 1830] = 1163.88KA/m
Notes:
We will contact you within 1 working day. You can also contact us by sending emails directly to sales@epimagnets.com.